建筑物中的加热和冷却系统占全球能源使用的31 \%,其中大部分受基于规则的控制器(RBC)调节,这些控制器(RBC)既不通过与电网进行最佳交互来最大化能源效率或最小化排放。通过强化学习(RL)的控制已显示可显着提高建筑能源效率,但是现有的解决方案需要访问世界上每栋建筑物都无法期望的特定建筑模拟器或数据。作为回应,我们表明可以在没有这样的知识的情况下获得减少排放的政策,这是我们称为零射击建筑物控制的范式。我们结合了系统识别和基于模型的RL的想法,以创建PEARL(概率避免发射的增强学习),并表明建立表现模型所需的短期积极探索是所需的。在三个不同的建筑能源模拟的实验中,我们显示珍珠在所有情况下都优于现有的RBC,并且在所有情况下,流行的RL基线,在维持热舒适度的同时,将建筑物排放量减少了31 \%。我们的源代码可通过https://enjeener.io/projects/pearl在线获得。
translated by 谷歌翻译
建筑物中的供暖和冷却系统占全球能源使用的31%,其中大部分受基于规则的控制器(RBC)调节,这些控制器(RBC)既不通过与网格最佳交互来最大程度地提高能源效率或最小化排放。通过增强学习(RL)的控制已显示可显着提高建筑能源效率,但是现有的解决方案需要在模拟器中进行预训练,这些模拟器对世界上每栋建筑物的获得非常昂贵。作为回应,我们表明可以通过结合系统识别和基于模型的RL的想法来对建筑物进行安全,零射击的控制。我们称这种组合珍珠(概率避免施加加固的增强学习),并表明它可以减少排放而无需预先培训,只需要三个小时的调试期。在三个不同的建筑能源模拟的实验中,我们显示珍珠在所有情况下都胜过现有的RBC,并且在所有情况下,流行的RL基线,在维持热舒适度的同时,将建筑物排放量降低了31%。
translated by 谷歌翻译
As language models (LMs) scale, they develop many novel behaviors, good and bad, exacerbating the need to evaluate how they behave. Prior work creates evaluations with crowdwork (which is time-consuming and expensive) or existing data sources (which are not always available). Here, we automatically generate evaluations with LMs. We explore approaches with varying amounts of human effort, from instructing LMs to write yes/no questions to making complex Winogender schemas with multiple stages of LM-based generation and filtering. Crowdworkers rate the examples as highly relevant and agree with 90-100% of labels, sometimes more so than corresponding human-written datasets. We generate 154 datasets and discover new cases of inverse scaling where LMs get worse with size. Larger LMs repeat back a dialog user's preferred answer ("sycophancy") and express greater desire to pursue concerning goals like resource acquisition and goal preservation. We also find some of the first examples of inverse scaling in RL from Human Feedback (RLHF), where more RLHF makes LMs worse. For example, RLHF makes LMs express stronger political views (on gun rights and immigration) and a greater desire to avoid shut down. Overall, LM-written evaluations are high-quality and let us quickly discover many novel LM behaviors.
translated by 谷歌翻译
As AI systems become more capable, we would like to enlist their help to supervise other AIs. We experiment with methods for training a harmless AI assistant through self-improvement, without any human labels identifying harmful outputs. The only human oversight is provided through a list of rules or principles, and so we refer to the method as 'Constitutional AI'. The process involves both a supervised learning and a reinforcement learning phase. In the supervised phase we sample from an initial model, then generate self-critiques and revisions, and then finetune the original model on revised responses. In the RL phase, we sample from the finetuned model, use a model to evaluate which of the two samples is better, and then train a preference model from this dataset of AI preferences. We then train with RL using the preference model as the reward signal, i.e. we use 'RL from AI Feedback' (RLAIF). As a result we are able to train a harmless but non-evasive AI assistant that engages with harmful queries by explaining its objections to them. Both the SL and RL methods can leverage chain-of-thought style reasoning to improve the human-judged performance and transparency of AI decision making. These methods make it possible to control AI behavior more precisely and with far fewer human labels.
translated by 谷歌翻译
Recent research in clustering face embeddings has found that unsupervised, shallow, heuristic-based methods -- including $k$-means and hierarchical agglomerative clustering -- underperform supervised, deep, inductive methods. While the reported improvements are indeed impressive, experiments are mostly limited to face datasets, where the clustered embeddings are highly discriminative or well-separated by class (Recall@1 above 90% and often nearing ceiling), and the experimental methodology seemingly favors the deep methods. We conduct a large-scale empirical study of 17 clustering methods across three datasets and obtain several robust findings. Notably, deep methods are surprisingly fragile for embeddings with more uncertainty, where they match or even perform worse than shallow, heuristic-based methods. When embeddings are highly discriminative, deep methods do outperform the baselines, consistent with past results, but the margin between methods is much smaller than previously reported. We believe our benchmarks broaden the scope of supervised clustering methods beyond the face domain and can serve as a foundation on which these methods could be improved. To enable reproducibility, we include all necessary details in the appendices, and plan to release the code.
translated by 谷歌翻译
Developing safe and useful general-purpose AI systems will require us to make progress on scalable oversight: the problem of supervising systems that potentially outperform us on most skills relevant to the task at hand. Empirical work on this problem is not straightforward, since we do not yet have systems that broadly exceed our abilities. This paper discusses one of the major ways we think about this problem, with a focus on how to turn it into one that can be productively studied empirically. We first present an experimental design centered on choosing tasks for which human specialists succeed but unaided humans and current general AI systems fail. We then present a proof-of-concept experiment following meant to demonstrate a key feature of this experimental design and show its viability with two question-answering tasks: MMLU and time-limited QuALITY. On these tasks, we find that human participants who interact with an unreliable large-language-model dialog assistant through chat -- a trivial baseline strategy for scalable oversight -- substantially outperform both the model alone and their own unaided performance. These results are an encouraging sign that scalable oversight will be tractable to study with present models and bolster recent findings that large language models can productively assist humans with difficult tasks.
translated by 谷歌翻译
我们介绍了Audioscopev2,这是一种最先进的通用音频视频在屏幕上的声音分离系统,该系统能够通过观看野外视频来学习将声音与屏幕上的对象相关联。我们确定了先前关于视听屏幕上的声音分离的几个局限性,包括对时空注意力的粗略分辨率,音频分离模型的收敛性不佳,培训和评估数据的差异有限,以及未能说明贸易。在保存屏幕声音和抑制屏幕外声音之间的关闭。我们为所有这些问题提供解决方案。我们提出的跨模式和自我发场网络体系结构随着时间的推移以精细的分辨率捕获了视听依赖性,我们还提出了有效的可分离变体,这些变体能够扩展到更长的视频而不牺牲太多性能。我们还发现,仅在音频上进行预训练模型可大大改善结果。为了进行培训和评估,我们从大型野外视频数据库(YFCC100M)中收集了新的屏幕上的人类注释。这个新数据集更加多样化和具有挑战性。最后,我们提出了一个校准过程,该过程允许对屏幕重建与屏幕外抑制进行精确调整,从而大大简化了具有不同操作点的模型之间的性能。总体而言,我们的实验结果表明,在屏幕上的分离性能在更一般条件下的屏幕分离性能的改善要比以前具有最小的额外计算复杂性的方法更为普遍。
translated by 谷歌翻译
医疗人工智能(AI)的最新进展已提供了可以达到临床专家水平绩效的系统。但是,当在与训练环境不同的临床环境中评估时,这种系统往往会证明次优的“分布式”性能。一种常见的缓解策略是使用特定地点数据为每个临床环境开发单独的系统[1]。但是,这很快变得不切实际,因为医疗数据很耗时,可以注释且昂贵[2]。因此,“数据有效概括”的问题给医学AI开发带来了持续的困难。尽管代表性学习的进展显示出希望,但并未对其好处进行严格的研究,特别是用于分布的设置。为了应对这些挑战,我们提出了RESEDIS,这是一种统一的代表学习策略,以提高医学成像AI的鲁棒性和数据效率。雷雷迪斯使用大规模监督转移学习与自我监督学习的通用组合,几乎不需要特定于任务的自定义。我们研究各种医学成像任务,并使用回顾性数据模拟三个现实的应用程序场景。 RESEDIS表现出明显改善的分布性能,而在强有力的基线上,诊断准确性相对相对提高了11.5%。更重要的是,我们的策略会导致对医学成像AI的强大数据有效的概括,并使用跨任务的1%至33%的重新培训数据匹配强有力的监督基线。这些结果表明,Repedis可以显着加速医学成像AI开发的生命周期,从而为医学成像AI提供了重要的一步,以产生广泛的影响。
translated by 谷歌翻译
超越地球轨道的人类空间勘探将涉及大量距离和持续时间的任务。为了有效减轻无数空间健康危害,数据和空间健康系统的范式转移是实现地球独立性的,而不是Earth-Reliance所必需的。有希望在生物学和健康的人工智能和机器学习领域的发展可以解决这些需求。我们提出了一个适当的自主和智能精密空间健康系统,可以监控,汇总和评估生物医学状态;分析和预测个性化不良健康结果;适应并响应新累积的数据;并提供对其船员医务人员的个人深度空间机组人员和迭代决策支持的预防性,可操作和及时的见解。在这里,我们介绍了美国国家航空航天局组织的研讨会的建议摘要,以便在太空生物学和健康中未来的人工智能应用。在未来十年,生物监测技术,生物标志科学,航天器硬件,智能软件和简化的数据管理必须成熟,并编织成精确的空间健康系统,以使人类在深空中茁壮成长。
translated by 谷歌翻译
空间生物学研究旨在了解太空飞行对生物的根本影响,制定支持深度空间探索的基础知识,最终生物工程航天器和栖息地稳定植物,农作物,微生物,动物和人类的生态系统,为持续的多行星寿命稳定。要提高这些目标,该领域利用了来自星空和地下模拟研究的实验,平台,数据和模型生物。由于研究扩展到低地球轨道之外,实验和平台必须是最大自主,光,敏捷和智能化,以加快知识发现。在这里,我们介绍了由美国国家航空航天局的人工智能,机器学习和建模应用程序组织的研讨会的建议摘要,这些应用程序为这些空间生物学挑战提供了关键解决方案。在未来十年中,将人工智能融入太空生物学领域将深化天空效应的生物学理解,促进预测性建模和分析,支持最大自主和可重复的实验,并有效地管理星载数据和元数据,所有目标使生活能够在深空中茁壮成长。
translated by 谷歌翻译